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Single-cell force spectroscopy (SCFS) is becoming a widely used method to quantify the adhesion of a
living cell to a substrate, another cell or tissue. The high sensitivity of SCFS permits determining the
contributions of individual cell adhesion molecules (CAMs) to the adhesion force of an entire cell.
However, to prepare adherent cells for SCFS, they must first be detached from tissue-culture flasks
or plates. EDTA and trypsin are often applied for this purpose. Because cellular properties can be
affected by this treatment, cells need to recover before being further characterized by SCFS. Here
we introduce atomic force microscopy (AFM)-based SCFS to measure the mechanical and adhesive
properties of HeLa cells and mouse embryonic kidney fibroblasts while they are recovering after
detachment from tissue-culture. We find that mechanical and adhesive properties of both cell lines
recover quickly (<10 min) after detachment using EDTA, while trypsin-detached fibroblasts require
>60 min to fully recover. Our assay introduced to characterize the recovery of mammalian cells after
detachment can in future be used to estimate the recovery behavior of other adherent cell types.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Specific adhesive interactions between cells and extracellular
matrix (ECM) or between cells play crucial roles in cellular com-
munication, tissue organization, embryonic development and
wound healing. Accordingly, a wide variety of diseases are associ-
ated with impaired cell adhesion [1–4]. Animal cells sense and
adhere to their extracellular environment via cell adhesion mole-
cules (CAMs), which are typically transmembrane proteins.
Specific interactions between CAMs and their extracellular ligands
induce intracellular signaling pathways, which regulate the
adhesive and mechanical properties of cells besides other cellular
processes. CAMs are classified into different families, including
integrins, cadherins and selectins [5–8]. To strengthen the cellular
attachment to an extracellular substrate, multi-protein complexes
anchor CAMs to the cytoskeleton. Key cytoplasmic adaptor pro-
teins include talin, kindlin, vinculin and catenins [9–12]. Due to
the general importance of cell adhesion, the interaction of CAMs
and their ligands are studied extensively using various, yet mostly
qualitative methods [13,14]. However, as these qualitative meth-
ods can provide helpful insights, describing the adhesive interac-
tions of cells benefits greatly from measuring quantitative
parameters such as cell adhesion forces, kinetics and energies.

Single-cell force spectroscopy (SCFS) offers the possibility to
measure adhesive forces and energies of single cells adhering to
a biotic or abiotic substrate, another cell or tissue [15,16]. SCFS
methods are based on force sensing devices such as optical or mag-
netic tweezers, micropipettes, or atomic force microscopy (AFM)
[14,17,18]. In these SCFS-based methods the cell is brought into
contact with an adhesive substrate or another cell for a given con-
tact time and then separated. While approaching and retracting the
cell, the interaction forces are recorded and provide a quantitative
measure of the adhesive interactions between cell and substrate.
Among all currently available SCFS methods, AFM-based SCFS cov-
gle-cell
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ers the largest dynamic force range from �10 pN to �100 nN
[16,18,19]. This wide range permits quantifying the adhesive force
of an entire cell down to the adhesive force established by single
CAMs. AFM-based SCFS attaches a single cell to the apex of a tipless
AFM cantilever (Fig. 1). To facilitate cell attachment, the cantilever
is coated either with a substrate-mimicking ligand (e.g., cell sur-
face receptors or ECM proteins including collagens, laminins, or
fibronectin), concanavalin A (ConA) to bind carbohydrates on the
cell surface, antibodies, or an unspecific adhesive (e.g., CellTak,
poly-L-lysine) [15,20–32]. The cantilever-bound cell is then
approached either to a protein-coated substrate, another cell, tis-
sue explant or biomaterial. After a pre-determined contact time,
during which the cell is allowed to initiate adhesion, the cantilever
is retracted until cell and substrate are fully separated. During the
approach and retraction cycle cantilever deflection (e.g., force) and
cell-substrate distance are recorded in so-called force–distance
(FD) curves (Fig. 1C). Analysis of the FD curves provides several
quantitative insights into the cellular interaction with the sub-
strate. The approach FD curve provides insight into the mechanical
properties of the cell being pressed onto the substrate [18,26,33–
35]. The retraction FD curve provides the maximum detachment
force, also called adhesion force, of the cell. However, two types
of smaller unbinding events contained in the retraction FD curves
correspond to the unbinding of single or clustered CAMs
[15,16,18,19,36]. These unbinding events are frequently named
rupture and tether events, and differ in the molecular scenarios
leading to their emergence. In rupture events, the CAMs remain
anchored to the actin-cytoskeleton and upon exposure of mechan-
ical stress detach from their extracellular ligand [22,31,32,37–39].
Fig. 1. Scheme of AFM-based SCFS. (A and B) To use a single cell as a probe it is bound to
ii) The cantilever is approached onto a protein-coated substrate until a preset contact forc
is fully separated from the substrate (iii and iv). During approach and retraction, the can
(FD) curves. (C) FD curves show different features: In the approach FD curve (red) the can
the stiffness of the cell and is called contact stiffness [33]. The retraction FD curve (black
force deflecting the cantilever and thus the maximum force needed to detach cell and
events are observed. Rupture events are recorded when the CAM-ligand bond of a cyto
extruded from the cell membrane with the CAM at its tip (tethers). In the latter case att
stress applied or non-existent [19,40,41].
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If the anchorage to the cytoskeleton breaks before the CAM
unbinds from the extracellular ligand or if the CAM has not been
attached to the cytoskeleton in the first place, the CAM is pulled
away from the cell cortex on the tip of a membrane tether
[19,36,40]. In this so-called tether event, the tether is mechanically
extended until the receptor-ligand bond breaks. The force required
to extend a tether from the cellular membrane does not depend on
the strength of the CAM-ligand bond but rather on mechanical
properties of the cellular membrane (e.g., bending rigidity, viscos-
ity, and tension) [40], the velocity at which the tether is extracted
from the membrane, and on cell membrane attachment to the cor-
tical cytoskeleton. In rare cases, tether extension from the cellular
membrane terminates when the tether fails or if the receptor is
pulled out of the membrane [40,41]. In the later separating phase
between cell and substrate, the cell body is not in contact with
the substrate anymore and tethers exclusively mediate cell adhe-
sion [31]. The analysis of tether unbinding events can provide
information on the lifetime of single CAM bonds, the mechanical
properties of the cell cortex, and cell membrane tension
[31,37,40,42–45].

Although SCFS measurements and other methods applied to
characterize cell adhesion provide quantitative and qualitative
insights into cell adhesion, a drawback is that adherent cells must
first be detached from culturing flasks in order to characterize their
adhesion to a given substrate. Cells are commonly detached with
trypsin and/or ethylenediaminetetraacetic acid (EDTA) [27,46,47].
Although some CAMs, such as a2b1 integrin [14], are trypsin resis-
tant, other CAMs such as cadherins are sensitive to trypsin cleav-
age [48]. Furthermore, other proteins involved in the initiation of
a concanavalin A (ConA)-coated tipless AFM cantilever (scale bar, 10 lm). (A) (i and
e is reached. After a defined contact time (ii), the cantilever is retracted until the cell
tilever deflection and thus, the force acting on the cell is recorded in force–distance
tilever deflection measured upon pressing the cell onto the substrate correlates with
) records the adhesion force of the cell, which represents the maximum downward
substrate. After recording the maximum adhesion force, single receptor unbinding
skeleton-linked CAM fails. Tether events are recorded when a membrane tether is
achment of the CAM to the cytoskeleton is either too weak to resist the mechanical
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cell adhesion may be indirectly activated by trypsin cleavage. For
example, trypsin has been shown to cleave and activate
protease-activated receptors (PARs), which regulate various cellu-
lar processes, including actomyosin cortex function and adhesion
[49–51]. Moreover, trypsin cleaves proteoglycans, which can con-
tribute to cell adhesion [52]. Because EDTA chelates divalent ions
its presence can perturb calcium and magnesium dependent cellu-
lar processes [53,54]. Although some CAMs are not functionally
dependent on divalent ions, many CAMs (e.g., integrins and
cadherins) require the availability of divalent ions for stably inter-
acting with their ligand and, thus, are inhibited upon EDTA treat-
ment. However, it is not entirely clear if and how EDTA and
trypsin treatment affects subsequent cell adhesion measurements,
especially directly after the cells have been detached from culture
flasks. To circumvent this uncertainty, in many SCFS studies the
cells were explicitly left to recover for a certain time after detach-
ment from the cell culture flask before characterizing their adhe-
sion properties [15,22,25,26,32–34,55–57]. However, to our best
knowledge a systematic approach to characterize the recovery
time needed to conduct reproducible cell adhesion experiments
has not been published. Here we introduce a simple assay to char-
acterize the recovery time of selected eukaryotic cell lines to
recover mechanical and adhesive properties after being detached
from culturing flasks. For this assay we first detach vertebrate cells
using either EDTA or trypsin, then allow them to recover from the
detachment process for different time ranges and subsequently use
SCFS to quantify their adhesive properties to collagen I, fibronectin
fragments and bovine serum albumin (BSA). The experiments
show that the recovery times of the cell lines depend on the
detachment method and that trypsin treatment can highly upreg-
ulate cell adhesion to ECM proteins. After increased waiting times
cells return to a ‘normal’ adhesion mode that is not influenced by
the agents used for detaching cells from culture flasks. The
approach described can be used to determine the ‘recovery time’
after detachment of virtually any eukaryotic cell type whose adhe-
sive properties are to be characterized. The described protocol can
thus be implemented in every SCFS-based study to exclude effects
of the cell detachment process on the outcome of the experiments.
2. Materials and methods

2.1. Cell culture

HeLa (Kyoto) cells and mouse embryonic kidney fibroblasts
were maintained in DMEM (Gibco-Life technologies, NY, USA), sup-
plemented with 10% (v/v) fetal calf serum (FCS, Sigma, Steinheim,
Germany), 100 units/mL penicillin (Gibco-Life technologies) and
100 lg/mL streptomycin (Gibco-Life technologies). HeLa cells were
grown on untreated and fibroblasts on fibronectin (Calbiochem-
Merck, Darmstadt, Germany) coated tissue culture flasks (Jet BioFil,
Guangzhou, China).
2.2. Expression and purification of fibronectin fragments

Fibronectin fragment FNIII7–10 and RGD-deleted fibronectin
fragment FNIII7–10DRGD were expressed from plasmid pET15b-
FNIII7–10 in Escherichia coli BL21 (DE3) pLysS as described [58].
Briefly, cells were grown in Lennox L broth (Invitrogen, Carlsbad,
USA) supplemented with 100 lg/mL of ampicillin (Sigma, Buchs,
Switzerland) and 34 lg/mL chloramphenicol (Sigma) at 37 �C.
Expression was induced with 500 mM isopropyl thiogalactose
(IPTG, Sigma) at optical density (OD)600 = 0.6. Cells were harvested
after 4 h, re-suspended in buffer (20 mM Tris–HCl, 150 mM NaCl,
pH 8.0), and broken by sonication. Cell debris was removed by
ultracentrifugation at 40000�g for 45 min. The soluble protein
Please cite this article in press as: Schubert, R., et al. Assay for characterizing
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fraction was bound to nickel-nitrilotriacetic acid resin (Protino�

Ni–NTA Agarose, MACHEREY–NAGEL, Düren, Germany) for 2 h at
4 �C. The resin was then loaded onto a column and washed with
buffer (20 mM Tris–HCl, 150 mM NaCl, 10 mM imidazole, pH
8.0). FNIII7–10 was eluted with elution buffer (20 mM Tris–HCl,
150 mM NaCl, 500 mM imidazole, pH 8.0). Peak fractions were
pooled and dialyzed against imidazole free buffer (20 mM Tris–
HCl, 150 mM NaCl, pH 8.0). The protein concentration was
adjusted to 1.0 mg/mL with dialyzing buffer and aliquots were
stored at �20 �C.

2.3. Surface coating of cantilever and petri dishes

Cantilevers (NP-0, Bruker, USA) were prepared for cell attach-
ment as described previously [27]. In short, cantilevers were
plasma-cleaned prior to overnight incubation (at 4 �C) in ConA
(2 mg/mL, Sigma) in PBS. The glass bottoms of Petri dishes
(35 mm FluoroDish, World Precision Instruments, US) were over-
laid with a PDMS mask to allow four different coatings of the glass
surface [31]. Three of the four PDMS framed glass surfaces were
incubated overnight in PBS at 4 �C either with collagen I (160 lg/
mL, Inamed Biomaterials, Fremont, CA), fibronectin fragment
FNIII7–10 (50 lg/mL), RGD deleted fibronectin fragment FNIII7–
10DRGD (50 lg/mL) or BSA (Sigma). The fourth segment was left
uncoated.

2.4. SCFS

For SCFS a CellHesion 200 (JPK Instruments, Berlin, Germany)
mounted on an inverted microscope (Observer.Z, Zeiss, Jena, Ger-
many) was used [59]. During SCFS cells were maintained at 37 �C
using a temperature controlled incubator box (LIS, Basel, Switzer-
land). 200 lm long tip-less V-shaped silicon nitride cantilevers
having nominal spring constants of 0.06 N/m (NP-0, Bruker) were
used for adhesion measurements. The spring constant of every can-
tilever was determined prior the experiment using the thermal
noise method [60] the accuracy of which lies at �10% [61].

Overnight serum-starved fibroblasts and HeLa cells grown in 24
well plates (Thermo Scientific, Roskilde, Denmark) to confluency of
�80% were washed with PBS and detached with either 200 lL of
15 mM EDTA (BioUltra Grade, Sigma) or 0.05% (w/v) trypsin
(Sigma), both in PBS, for four and two minutes, respectively.
Detached cells were suspended in SCFS media (DMEM supple-
mented with 20 mM HEPES) containing 1% (v/v) FCS, pelleted
and resuspended in serum free SCFS media. Throughout experi-
ments the PDMS masks framing the four segments of glass surfaces
remained on the Petri dishes. Each PDMS mask of a Petri dish was
washed with SCFS media to exchange coating buffers and to
remove weakly attached proteins of the individual glass segments.
Cell suspensions were pipetted into the Petri dishes containing the
substrate-coated glass supports and allowed to settle. To attach
single cells, the apex of a calibrated, ConA functionalized cantilever
was lowered with a velocity of 10 lm/s onto a cell until reaching a
contact force of 3 nN. After 5 s contact, the cantilever was retracted
from the Petri dish by 50 lm. Cells were incubated in SCFS media
for different times to characterize cell adhesion after different
recovery times. For adhesion experiments, cantilever bound cells
were lowered onto a given substrate-coated glass segment with a
velocity of 5 lm/s until reaching a contact force of 1 nN. The can-
tilever was maintained at this position (constant height) for 60 s
and subsequently retracted with 5 lm/s for >90 lm until the cell
detached from the substrate-coated glass segment. After detach-
ment from the substrate segment the cell was allowed to recover
for 60 s before probing adhesion to the next substrate-coated glass
segment. Single cells were used to probe adhesion for all three
recovery time ranges. As soon as cells showed morphological
the recovery of vertebrate cells for adhesion measurements by single-cell
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changes (e.g., spreading on cantilever) they were replaced. Cell
adhesion at recovery times >60 min were quantified using addi-
tional cells. Cells were not characterized at recovery times
>90 min after detachment from the culture flask. Adhesion forces
were extracted from FD curves using the JPK data processing
software (JPK Instruments). Cell stiffness, rupture forces, and
tether forces were analyzed using in-house build routines, which
were based in Igor 6 (Wavemetric, Oregon, USA). Rupture events
were identified by the non-linear slope before of the force jump,
while tether events were identified by the force plateaus (constant
force) having a maximum tilt of 10� before of the force
jump (Fig. 1C). Statistical test were done using Prism (GraphPad,
La Jolla, USA).

2.5. Confocal microscopy

To image F-actin and non-muscle myosin IIA, we used a HeLa
cell line expressing human MYH9-GFP and Lifeact-mCherry.
Geneticin (0.5 mg/mL, Life Technologies) and puromycin (0.5 lg/
mL, Life Technologies) were used for antibiotic selection. An
inverted confocal microscope (Observer.Z1, LSM 700, Zeiss) with
a 63x/1.3 LCI Plan–Neofluar water immersion objective (Zeiss)
was used. Cells were maintained at 37 �C using a Petri dish heater
(JPK Instruments). In all the representative images shown, contrast
and brightness were adjusted to similar levels for visual compari-
son using Zeiss AxioVision software (Rel. 4.8).

3. Results

To characterize a potential influence of the detachment process
of adherent cells from culture flasks on the cell’s ability to re-estab-
lish adhesion, mouse kidney fibroblasts and HeLa cells were
detached from flasks using either 15 mM EDTA or 0.05% (w/v) tryp-
sin. After a certain recovery interval in media, cells were non-spe-
cifically attached to tipless AFM cantilevers functionalized with
concanavalin A (ConA). SCFS was then used to characterize the
adhesion of an attached cell to different substrates (Fig. 1). The
parameters extracted from the approach and retract FD curves
recorded in these experiments were contact stiffness of the cell
pressed to the substrate, maximum adhesion force of the
Fig. 2. Contact stiffness of (A) mouse kidney fibroblasts and (B) HeLa cells for different
determined as depicted in Fig. 1. SCFS experiments on different substrate coatings are co
allowed to recover after detachment from culture flasks using either EDTA or trypsin. W
using SCFS. Each dot represents one SCFS measurement, approaching a single fibroblast o
indicate average values. <n> Gives the number of measurements for each condition. Mann
to those made after a recovery time of >60 min.
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cell, and the force of the single rupture and tether events
(Fig. 1C). In the following paragraphs we will report how the cell
detachment procedure from culture flasks affects each of these
parameters.

3.1. Characterizing the contact stiffness of cells after detachment from
culture flasks

To conduct adhesion measurements by SCFS, single cells
attached to the AFM cantilever are pressed onto a substrate for a
given contact force and time. Normally contact forces on the range
of a few nN are chosen, which distribute over the entire contact
area of cell and substrate and result in a relatively small contact
pressure applied to the cell. For example, when pressing mouse
kidney fibroblasts onto the substrate at a contact force of 1 nN,
the contact area estimated from optical microscopy is
70.4 ± 12.2 lm2 (average ± S.D., n = 8). This results in a contact
pressure of 14.6 ± 2.8 N/m2 (e.g., Pa), which is much smaller than
the typical intracellular pressure (�10–10.000 Pa) generated by
animal cells [62–64]. However, if the procedure applied to detach
the cells from cell culture flasks influences the mechanical proper-
ties of the cell, pressing a softer or stiffer cell onto the substrate at a
given contact force results in different cell-substrate contact areas.
Variations of the contact area can have a direct impact on the num-
ber of CAMs that could bind their ligands and establish adhesion.
Accordingly, if the mechanical properties of the cell would vary
with the time after detachment from the culture flask this could
have a considerable impact on the SCFS measurements.

Our SCFS experiments show that the contact stiffness of mouse
kidney fibroblasts does not significantly change with increasing
recovery time after detachment from the cell culture flask by tryp-
sin (Fig. 2). After EDTA detachment from the culture flasks, the
mean contact stiffness of fibroblasts shows small variations of less
than 20% (940–1160 pN/lm) between different recovery times,
and the contact stiffness of single cells distributed widely for each
recovery time. We therefore consider this difference insignificant
(P-values > 0.01). The independence of contact stiffness on recov-
ery time is also observed for HeLa cells detached by EDTA or tryp-
sin. These measurements suggest that at the contact force applied
and within the sensitivity of the SCFS measurements, detachment
recovery times after detachment from cell culture flasks. The contact stiffness was
mbined for different recovery times. The recovery time denotes the time cells were
ithin this recovery time cell adhesion to the different substrates was characterized
r HeLa cell at 5 lm/s to the substrate until reaching a contact force of 1 nN. Red bars
–Whitney P-values (in gray) indicating the significance of measurements compared
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from the cell culture flasks by either EDTA or trypsin does not
change the mechanical properties of the cell and, thus, does not
change the contact area between cell and substrate.

3.2. Cortical actomyosin localization shows no significant changes
during recovery after detachment from culture flasks

An AFM cantilever compressing a rounded cell by a few lm
mainly measures the mechanical properties of the actomyosin cor-
tex [65]. In the previous section we observed no changes of the
contact stiffness of mouse embryonic kidney fibroblasts and of
HeLa cells detached by trypsin or EDTA. Previous experiments sug-
gest that the enrichment of cortical F-actin and myosin II correlates
with higher cell cortex tensions in interphase cells [66,67]. Thus,
our SCFS results showing that the mechanical properties of cells
remain unchanged over the entire recovery time course suggest
that the actomyosin cortex of the cells remains unchanged as well.
To further investigate whether this is indeed the case we imaged
the dynamics of actin and myosin in HeLa cells stably expressing
Lifeact-mCherry and MYH9-GFP after detachment from culture
flasks using EDTA or trypsin (Fig. 3). Regardless of the detachment
method applied, the live cell confocal microscopy images revealed
no significant elevation of F-actin or myosin IIA forming the acto-
myosin cortex thickness. The confocal microscopy images support
the observation by SCFS that the cortical stiffness remained
unchanged over the same time course.

3.3. Influence of recovery time on cell adhesion

Next, we investigated whether the adhesion force of mouse kid-
ney fibroblasts or HeLa cells to different substrates depends on the
detachment method from the culture flasks. For fibroblasts we
used substrates featuring collagen I, a fibronectin type III fragment
containing repeat 7–10 domains (FNIII7–10) and a fibronectin
FNIII7–10 fragment lacking the integrin binding site (FNIII7–
10DRGD). Whereas fibroblasts can specifically adhere to collagen
I and to FNIII7–10 via integrins [58,68], they are unable to specifi-
cally adhere to FNIII7–10DRGD [58,69]. Thus, FNIII7–10DRGD was
used as a control to characterize unspecific fibroblast adhesion.
SCFS showed that the adhesion force of fibroblasts to the two spe-
cific substrates collagen I and FNIII7–10 does not depend on the
Fig. 3. Tracking the actomyosin cortex after detachment with (A) EDTA or (B) trypsin. Con
and GFP labeled myosin II (MYH9-GFP, green). Images were acquired every 10 min thro
trypsin or 15 mM EDTA, and seeded in SCFS medium devoid of either trypsin or EDTA. S
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recovery time of the cell if detached from culture flasks using EDTA
(Fig. 4A). Although adhesion forces to the FNIII7–10DRGD control
substrate decreases slightly after >60 min of recovery, the averages
differ only by about 200 pN resulting in lower significance levels.
However, fibroblasts detached from culture flasks in the presence
of 0.05% (w/v) trypsin showed a different behavior. While adhesion
of fibroblasts to collagen I did not depend on the recovery time
after trypsin-induced detachment, adhesion to the fibronectin
fragment FNIII7–10 showed a clear time dependence. To our sur-
prise, also the adhesion to the non-specific substrate (FNIII7–
10DRGD) depended on the recovery time. In both cases cell adhe-
sion was at first strongly enhanced after detachment and only after
recovery times >60 min showed values equal to those observed for
fibroblasts detached from culture flasks using EDTA. This high-
lights that trypsin treatment to detach fibroblasts from cell culture
flasks activates their adhesion to fibronectin. As fibroblast adhe-
sion to the FNIII7–10DRGD control substrate can be seen as being
unspecific the results suggest trypsin cleavage to slightly increase
unspecific adhesion as well.

Using HeLa cells we characterized adhesion to collagen I,
FNIII7–10, and BSA. Similarly to the fibroblasts HeLa cells adhered
to collagen I and FNIII7–10 specifically via integrins [26,70,71].
However the integrin expression levels of both cell lines may be
different and, thus, also the adhesion of HeLa cells differed from
that observed for fibroblasts. In contrast to fibroblasts, HeLa cells
showed a relatively high unspecific adhesion to FNIII7–10DRGD
coated substrates (data not shown). Thus, we used BSA as
substrate, which is frequently used to suppress unspecific cell
adhesion to the supporting glass surface [72,73]. The adhesion
force of HeLa cells to the three different substrates was largely
independent on the detachment method (EDTA or trypsin) from
culture flasks prior to SCFS measurements (Fig. 4). These results
highlight that the adhesive properties of different cell lines are dif-
ferently affected by the procedure used to detach the cells from
culture flasks.

3.4. Rupture events do not depend on recovery time

After having characterized the maximum cell adhesion force of
fibroblasts and HeLa cells to different ECM substrates, we analyzed
the rupture events recorded during cell-substrate detachment
focal images of HeLa cells expressing mCherry labeled F-actin (Lifeact-mCherry, red)
ugh the center of the cell. Cells were detached from cell culture flasks with 0.05%
cale bar 20 lm, applies to all images.
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Fig. 4. Adhesion force of (A) mouse kidney fibroblasts and (B) HeLa cells recorded after different recovery times from trypsin or EDTA treatment. Fibroblast adhesion forces
were recorded to collagen I, fibronectin type III fragment containing repeats 7–10 (FNIII7–10), or the same fibronectin fragment lacking the RGD sequence (FNIII7–10DRGD).
Adhesion forces of HeLa cells were recorded to collagen I, FNIII7–10, or BSA. Cantilever-bound cells pressed on the substrate with a force of 1 nN were allowed to initiate
adhesion for 60 s prior to retraction. Each dot represents a single cell characterized. Red bars indicate average values. <n> Gives the number of cells characterized for each
condition. Mann–Whitney P-values indicating the significance of the measurements compared to those made after a recovery time of >60 min given in gray.
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(Fig. 5). These rupture events correspond to the breaking of indi-
vidual or clusters of CAM-ligand bonds exposed to mechanical
stress. Rupture events recorded for fibroblasts and HeLa cells
detached from culture flasks using EDTA or trypsin prior SCFS did
not show significant dependency on recovery time (Fig. 5). This
result may be seen in contradiction to the increased adhesion
strength of fibroblasts to the fibronectin constructs, which
depended strongly on the recovery time of the fibroblasts after
trypsin treatment (Fig. 4). However, because the strength of the
single rupture events (median rupture force �50 pN with data
points spreading from 15 to 400 pN) were not affected by trypsin
(Fig. 5) our result suggests that the increased fibroblast adhesion
to FNIII7–10 originated from increased avidity (e.g., availability of
CAMs binding to fibronectin) rather than increased affinity (e.g.,
binding strength of CAMs to fibronectin).

3.5. Tether forces do not depend on recovery time

Next, we characterized the forces required to extract single
tethers from fibroblasts and HeLa cells while being detached from
the three different substrates (Fig. 6). Although the median tether
Please cite this article in press as: Schubert, R., et al. Assay for characterizing
force spectroscopy. FEBS Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.0
forces statistically sometime depended on the recovery time after
detachment from the culture flasks, the differences were very
minor (<10 pN) compared to the spread of the data points
(Fig. 6). Thus, we do not consider the tether force differences as rel-
evant for the detachment process using either EDTA or trypsin.
Because the force required to extract tethers from cell membranes
depends on the properties of the cell membrane and not on the
CAM bond adhering the tether to the substrate, this result indicates
that the properties of the cell membrane do not depend on the
procedure used to detach the cells from the culture flasks.

4. Discussion

We investigated the time-dependent recovery of the adhesive
properties of eukaryotic cell lines, which, prior to measuring these
properties by AFM-based SCFS, have been detached from culture
flasks using either EDTA or trypsin. Therefore, we quantified
mechanical stiffness and adhesion forces of mouse embryonic kid-
ney fibroblasts and HeLa cells at different recovery times after
detachment from culture flasks. The mechanical stiffness of a cell
determines the contact area of the cell pressed onto the substrate
the recovery of vertebrate cells for adhesion measurements by single-cell
6.012
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Fig. 5. Forces of single rupture events recorded for (A) mouse kidney fibroblasts and (B) HeLa cells after different recovery in times from EDTA or trypsin treatment. Rupture
forces were recorded upon detaching single fibroblasts adhering to Petri dishes coated with collagen I, FNIII7–10, or FNIII7–10DRGD and upon detaching HeLa cells adhering to
Petri dishes coated with collagen I, FNIII7–10, or BSA. Cells were pressed onto the substrates with a 1 nN contact force and were allowed to establish adhesion for 60 s.
Subsequently, the cantilever was retracted at 5 lm/s for at least 90 lm. The recovery time denotes the time cells were allowed to recover after detachment from culture flasks
using either EDTA or trypsin. After the recovery time passed, adhesion of the cells to the different substrates was characterized using SCFS. Each dot represents one rupture
event with the red bars indicating median values. (n) Gives the number force–distance curves and <n> the number of rupture events analyzed for each condition. Mann–
Whitney P-values indicating the significance of the measurements compared to those made after a recovery time of >60 min are given in gray. Distributions of rupture forces
are shown in Supplementary Fig. S1.
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and thus has a direct influence on the adhesion formed. Interest-
ingly, the contact stiffness determined for fibroblasts and HeLa
cells did not reveal any significant dependency on the detachment
method applied or on the recovery time investigated. One reason
may be that the low contact force of �1 nN applied by the cantile-
ver on single cells while pressing them to the substrate only
weakly deforms the cells and, thus, hardly stresses their actomyo-
sin cortex. However, we applied only very little contact force to the
cells in our SCFS measurements and applying much higher forces
of 50–100 nN through the cantilever severely deforms pre-rounded
interphase cells [74,75]. At such high forces the AFM cantilever
probes different mechanical properties of the cell, which may
depend on pretreatment using trypsin and/or EDTA. Such depen-
dency would change the contact area between cell and substrate
and, thus, the adhesion probed by SCFS.
Please cite this article in press as: Schubert, R., et al. Assay for characterizing
force spectroscopy. FEBS Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.0
There was also no significant influence on adhesive properties
when detaching either cell types from culture flasks using EDTA.
EDTA chelation of divalent ions inhibits CAMs that require divalent
ions for establishing adhesive interactions [76]. Since the detached
cells are transferred to EDTA-free buffer solutions this result sug-
gests that CAMs recover quickly from EDTA treatment and can
readily re-establish adhesion [33]. However, we can only make
conclusions concerning mouse embryonic kidney fibroblasts and
HeLa cells, and for CAMs facilitating adhesion to collagen I and
fibronectin, and recovery from EDTA exposure may be character-
ized for every cell line and CAM by SCFS.

Trypsin severely affected the adhesive properties of fibroblasts.
Shortly after trypsin-induced detachment of fibroblasts from cell
culture flasks the adhesion force of these cells to the fibronectin
constructs increased considerably. Fibroblasts needed >60 min to
the recovery of vertebrate cells for adhesion measurements by single-cell
6.012
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Fig. 6. Forces required to mechanically extract single tethers from (A) fibroblasts and (B) HeLa cells after different recovery in times from EDTA or trypsin treatment. Tether
forces were recorded upon detaching single fibroblasts adhering to Petri dishes coated with collagen I, FNIII7–10, or FNIII7–10DRGD or upon detaching HeLa cells adhering to
Petri dishes coated with collagen I, FNIII7–10, or BSA. Cells were pushed onto the substrates with a contact force of 1 nN and were allowed to establish adhesion for 60 s.
Subsequently, the cantilever was retracted at 5 lm/s for at least 90 lm. The recovery time denotes the time cells were allowed to recover after detachment from culture flasks
using either EDTA or trypsin. After this recovery time passed the adhesion of the cells to the different substrates was characterized using SCFS. Each dot represents one tether
event with the red bars indicating median values. (n) Gives the number force-distance curves and <n> the number of tether events analyzed for each condition. Mann–
Whitney P-values indicating the significance of the measurements compared to those made after >60 min recovery time are given in gray. Distributions of tether forces are
shown in Supplementary Fig. S2.
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recover adhesive properties from trypsin treatment. In contrast the
adhesion force of fibroblasts to collagen I did not increase by tryp-
sin pre-treatment. Although the adhesion of fibroblasts was just
above background level, we also did not observe a decrease in
adhesion force. This latter finding is in agreement with previous
investigations showing that pre-treating CHO-A2 cells with trypsin
does not cleave collagen I binding a2b1 integrins and does not
affect cell adhesion to collagen I matrices [22]. Thus, pre-treating
fibroblasts using trypsin specifically upregulated CAMs binding to
fibronectin. Indeed, trypsin cleaves and activates human PAR2,
which stimulates a5b1 integrin but not aVb3 integrin dependent
cell adhesion [77]. a5b1 integrins bind to the RGD site located in
the FNIII7–10 fragment of fibronectin [69] and besides aVb3 inte-
grins are the main CAMs for fibronectin in mouse kidney fibro-
blasts [68]. These results highlight that only certain CAMs may
be affected by the procedure used to detach cells from culture
flasks whereas other CAMs remain unaffected. Our results further-
more show that the cell detachment procedures applied do not
Please cite this article in press as: Schubert, R., et al. Assay for characterizing
force spectroscopy. FEBS Lett. (2014), http://dx.doi.org/10.1016/j.febslet.2014.0
alter the affinity of fibronectin binding CAMs (e.g., binding strength
remains unchanged), but rather increases the cell adhesion forces
by increasing the avidity of these receptors (e.g., number of binding
events).

To our surprise fibroblast adhesion to the FNIII7–10DRGD
substrate increased after trypsin cleavage. Fibroblasts needed
>60 min to lower their enhanced unspecific adhesion to FNIII7–
10DRGD to their normal adhesion value. Because mouse kidney
fibroblasts have no CAMs to specifically adhere to FNIII7–10DRGD
[68], we speculate that this increased adhesion is due to an
increased number of CAMs, which interact unspecific with the sub-
strate. However, the strength of such unspecific cellular interac-
tions may depend on the substrate.

In contrast to fibroblasts the adhesion of HeLa cells was appar-
ently not affected by trypsin treatment within the recovery times
tested and force sensitivity of our SCFS-based assay. This shows
that cell lines can react differently to the detachment methods
used and that the recovery of each cell line must be carefully stud-
the recovery of vertebrate cells for adhesion measurements by single-cell
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ied before characterizing its mechanical and adhesive properties
by SCFS. Importantly, these results further demonstrate that the
quantification of cell adhesion by SCFS and probably by other cell
adhesion assays requires careful investigation whether the CAMs
addressed in cell adhesion studies are affected by the detachment
procedure and whether the cells characterized have sufficient time
to recover from this detachment.

To date in most SCFS studies the cells were explicitly left to
recover for a certain time from their detachment from the cell cul-
ture flask before being characterized by SCFS [15,22,25,26,32–
34,55–57]. Thus, SCFS users have already allocated a certain time
span to enable detached cells to recover. However, so far a quanti-
tative approach to characterize this recovery has not been pre-
sented. Our approach can be applied to characterize the recovery
time of any adherent cell after detachment from cell culture flasks.
Our approach can also be used to optimize the detachment proce-
dure for specific cell types. For example, our measurements show
that mouse kidney fibroblasts and HeLa cells, detached from cul-
ture flasks by EDTA, do not need recovery times of more than
10 min, whereas cells detached using trypsin need to recover for
up to 60 min. Thus, EDTA may be more suitable to detach the cell
lines investigated here from culture flasks and to investigate their
mechanical and adhesive properties.
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